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Phason-disordered two-dimensional quantum antiferromagnets
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We examine a type of disorder that is unusual in the context of quantum antiferromagnets although well
known in the literature of quasiperiodic systems. Our model consists of localized spins with antiferromagnetic
exchanges on a bipartite quasiperiodic structure, which is geometrically disordered in such a way that no
frustration is introduced. In the limit of zero disorder, the structure is the perfect Penrose rhombus tiling. This
tiling is progressively disordered by augmenting the number of random “phason flips” or local tile-reshuffling
operations. The ground state remains Néel ordered, and we have studied its properties as a function of
increasing disorder using linear spin-wave theory and quantum Monte Carlo. We find that the ground-state
energy decreases, indicating enhanced quantum fluctuations with increasing disorder. The magnon spectrum is
progressively smoothed, and the effective spin-wave velocity of low-energy magnons increases with disorder.
For large disorder, the ground-state energy as well as the average staggered magnetization tend toward limiting
values characteristic of this type of randomized tilings.
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This Brief Report discusses the effects of a type of disor-
der called phason disorder on the ground state of Heisenberg
antiferromagnets. The clean system is a perfectly determin-
istic quasiperiodic two-dimensional (2D) tiling, and the type
of disorder we consider is geometrical, involving a discrete
shift of a randomly selected subset of sites. These phason
flips are operations that correspond to reorganizing the struc-
ture locally in the vicinity of the flipped site. This type of
disorder is strongly constrained, as one does not modify the
basic building blocks of the structure, but only the way they
are connected. For many quasicrystalline alloys, samples of
good quality are believed to possess long-range order with
some thermally induced phonon and phason disorder present
at finite temperatulres.1 However, one can also consider es-
sentially random quasiperiodic structures, which could be
preferred for entropic reasons.’

Quenched phason disorder has been considered previ-
ously in other contexts, in particular, concerning electronic
properties, and the possibility of Anderson localization in
such systems was discussed. Benza et al.® considered quan-
tum diffusion in a two-dimensional randomized tiling and
found that the typical value of the diffusion exponent was
larger for the disordered system compared to the pure case.
This means that quasicrystals show delocalizationlike effects
from disorder rather than the opposite, weak localization due
to disorder, observed in periodic systems. Piechon and
Jagannathan* came to the same conclusion by analyzing the
statistics of the energy levels in phason-disordered tilings
(see, e.g., Refs. 5 and 6 for reviews). Schwabe ef al.” ana-
lyzed the effect of phason flips on the electronic levels and
wave functions, showing that they lead to a smoothing of the
density of states, as well as of the fluctuations of the conduc-
tance. Finally, the effects of randomness on the phonon spec-
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trum has been considered in two-dimensional quasiperiodic
tilings (see, e.g., Ref. 8).

The study of the Heisenberg model on a quasiperiodic
tiling is motivated by experimental findings of antiferromag-
netic correlations in quasiperiodic ZnMgR alloys (R: rare
earth).” In theoretical models considered thus far!®'* bipar-
tite tilings are considered, with all sites occupied by spins,
and their exchanges restricted to adjacent lattice sites, such
that no frustration arises. Furthermore, these studies did not
take into account the effects of disorder, which is almost
certainly also present in the experimentally studied alloys.
Here, we focus on the effects that arise in quasiperiodic mag-
nets in the presence of phason disorder, which is found to
lead to enhanced quantum fluctuations, as indicated by the
lowering of the ground-state energy along with a reduction in
the staggered magnetization with increasing disorder.

Figure 1 shows a portion of a perfect (deterministic) Pen-
rose tiling and a typical example of a phason-disordered til-
ing. We consider in the following the antiferromagnetic
spin-% Heisenberg model with Hamiltonian H=JZ; 3S;-S;
for spins S; located on all vertices of such tilings. Nearest-
neighbor exchanges are antiferromagnetic />0 and act be-
tween pairs of sites that are linked by an edge. Despite the
fact that all couplings are equal, the ground state is spatially
inhomogeneous contrary to, e.g., the square lattice antiferro-
magnet, where the staggered magnetization is uniform. The
local staggered magnetizations vary as a function of the local
environment, and the ground state takes a complex hierarchi-
cally organized structure.'®'* The disorder considered here
is purely geometric; i.e., the coupling J along bonds remains
fixed at a constant value.

Using linear spin-wave theory (LSWT) and quantum
Monte Carlo (QMC) calculations, we consider periodic ap-
proximants of the Penrose tiling.!>!% These are finite samples
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FIG. 1. Illustration of a perfect (upper panel) and a phason-
disordered Penrose tiling (lower panel).

of N spins, satisfying periodic boundary conditions. Perfect
tilings are obtained by the cut-and-project method (see, e.g.,
Ref. 14) after which they are disordered by the following
method: A phason flip is a process by which a threefold site
hops to a new allowed position (in terms of the tile configu-
rations). The old site disappears, as do the three bonds link-
ing it to its neighbors, while a new threefold site appears on
the other sublattice (Fig. 2). In our phason generating proce-

dure, we randomly select a threefold site. If r, and r; (i
=1,2,3) denote the position vectors of the central site and its

three neighbors, the new position of the site is given by r;
—r0=§‘,}3.=1(rj—r0) (Fig. 2). Three new bonds appear linking
the new site to the sites at the positions r; (j=1,2,3). The
coordination numbers of all of the seven sites involved are
updated, and the whole procedure is repeated, with the con-
straint that there be an equal number of flipped sites on the A
and the B sublattices, so as to preserve the condition N,
=Np, where N, (Nj) denotes the number of sites of the A (B)
sublattice.

FIG. 2. (Color online) A single phason flip, showing the original
(ro) and final (r() positions of the shifted lattice site. New edges are
shown by dashed lines.
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For a given total number of phason flips Ny, the degree of
disorder A is defined as the average overlap distance between
the perfect sample and the disordered samples. The overlap
for a given sample is defined by N‘IEZl n;, where 7, is 1 or
0, depending on whether site i is shifted or not with respect
to the perfect tiling. The whole procedure is then repeated for
approximants of system sizes N=246, 644, 1686, and 4414
in LSWT and 246, 644, and 1686 in QMC. Averaging is
carried out over a large number of samples: 100 samples for
N=246, 644, and 1686 and 10 samples for N=4414 in
LSWT, and 40 samples for N=246 and 20 samples for N
=644 and 1686 in the QMC. This method of disordering
does not change the overall number of rhombi of each kind
and generates samples of fixed phason strain.'> Due to the
fact that we start out with a defected structure (a periodic
approximant, which is only locally equivalent to the infinite
quasiperiodic tiling) there is an upper limit to the number of
phason flips we are able to introduce in the tilings. Unaccept-
able configurations are observed to appear after a number of
flips larger than about 1.3N, corresponding to the number of
steps after which the periodic boundary conditions are felt by
the system.

After the randomized samples are obtained, LSWT calcu-
lations are performed as described in Refs. 12 and 14. Spin
operators are transformed using the Holstein-Primakoff
transformation to bosonic operators a; and b; (i,j
=1,...,N/2), corresponding to the A and B sublattices, re-
spectively. The linearized Hamiltonian in the boson operators
is then diagonalized numerically. Once the eigenmodes have
been determined, one obtains the ground-state energy, and
local staggered magnetizations for each realization of disor-
der. Finally, we carry out the statistical analysis of the results
by performing disorder averaging. Within the QMC simula-
tions, we obtain the local staggered magnetization mf(i)
= I%Ejyzleie(SfSﬁ from the spin-spin correlation function,'%!2
where €;*+ 1, depending on whether lattice site i belongs to
sublattice A or B. The QMC simulations were performed
using the stochastic series expansion method!® at tempera-
tures taken low enough to obtain ground-state properties of
these finite systems.!?

We now describe our results on the effect of phason dis-
order. First, we consider the average ground-state energy per
site Ey/N, shown as a function of disorder in Fig. 3 for the
N=4414 sites system. The values have been normalized with
respect to the value obtained for the clean system. Also
shown is a fit to an exponential decay toward a limiting value
in the strong disorder case, of the form Ey/N=egis+(epers
—egi)e ™, with a=11.16, €4;,=—0.6500, and e=—0.6429.
The asymptotic value of the ground-state energy eg;, repre-
sents the average value of the ground-state energy of maxi-
mally randomized Penrose approximants, which lies below
the ground-state energy of the perfect system. This indicates
that the introduction of phasons tends to enhance quantum
fluctuations in the tilings, as compared to the clean case. The
inset of Fig. 3 shows the ground-state energy per site as a
function of disorder, obtained from LSWT and QMC simu-
lations, normalized with respect to the value obtained for the
clean system. The results obtained from LSWT and QMC are
found to be in good agreement. This also shows the applica-
bility of the linear spin-wave approximations to this random-
ized system.
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FIG. 3. (Color online) Dependence of the ground-state energy
on the disorder strength A calculated within LSWT. The smooth
curve is a fit to an exponential decay toward a higher disorder
value. The system size N=4414. The inset shows the normalized
ground-state energy as a function of disorder A. Points represent
values obtained after scaling LSWT and QMC data to infinite sys-
tem sizes.

Next, we consider the density of states defined by p(E)
:ﬁEﬁZ:l&(E—wm), where w,, are the eigenvalues found by
numerical diagonalization. Figure 4 shows the density of
states, p(E) (smoothed by replacing the delta function by a
Gaussian of fixed small width, so as to eliminate the most
rapid fluctuations), plotted as a function of E for several
values of the disorder strength. The figure shows that main
effects of phason disorder on the density of states is to pro-
gressively flatten and broaden the peaks, leading to a
smoothening of fluctuations and filling in of gaps. Similar
behavior is seen in the electronic case.’ The low-energy tail
is linear and can be fitted to obtain the averaged low-energy
spin-wave velocity ¢, which increases with A as shown in
the inset of Fig. 5. This indicates that spin-wave propagation
is facilitated by the phason disorder, in analogy with the
problem of quantum diffusion of electrons in the tight-
binding model in quasiperiodic tilings.’> In addition, the lo-
calized states at £=3 disappear progressively. These states
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FIG. 4. Evolution of the density of states N(E) for various val-
ues of the disorder strength A from LSWT on the N=4414 sites
system.
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FIG. 5. (Color online) Normalized averaged staggered magneti-
zation as a function of phason disorder strength A. Points represent
values obtained from LSWT and QMC data after scaling to the
thermodynamic limit. The inset shows the averaged spin-wave ve-
locity ¢ as a function of the disorder strength A as obtained within
LSWT.

arise on closed loops of threefold sites.'* They are hence
destroyed when a phason flip occurs on one of the partici-
pating sites.

Finally, we turn to discuss the evolution of the staggered
magnetization upon introducing phason disorder. Figure 5
shows the spatial average of the staggered magnetization
(i.e., after averaging over all of the sites) as a function of
disorder, normalized with respect to the value obtained for
the clean system. The curve shows a clear decrease in the
global staggered magnetization with increasing disorder. As
for the ground-state energy curve, the decrease eventually
levels off. It is also interesting to analyze the evolution of the
full distribution of the staggered magnetizations with in-
creasing phason disorder. In the perfect tiling, this distribu-
tion has several peaks, each of which corresponds to a dis-
tinct coordination number. In the disordered tilings, the
differences between the coordination numbers are smoothed
out. As Fig. 6 shows, the distribution becomes smoother, as
the disorder is increased. In addition, the average value shifts
to lower values. The smoothing occurs due to a larger num-
ber of local environments created by the phason flips and due
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FIG. 6. Evolution of the distribution in the local staggered mag-
netization with the disorder strength, as obtained within LSWT on
the 4414 sites system.
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FIG. 7. (Color online) Color representation of the local stag-
gered magnetizations in a perfect tiling (left) and a disordered tiling
(right) showing sites of magnetizations ranging from high (blue
online) to low (red online) values.

to the loss of self-similarity on larger length scales.

Figure 7 is a representation of the magnetization values in
a small portion of the tiling for the perfect and the disordered
cases. The distribution is more homogeneous in the disor-
dered tiling, which furthermore lacks the hierarchical fea-
tures of the perfect tiling. In the color plot, one can also note
that the disordered ground state (right hand figure) possesses
a reddish tone compared to the perfect ground state (left hand
figure), illustrating the already noted fact that globally the
staggered magnetization is lower in the disordered system.

In conclusion, we analyzed the effects of geometrical dis-
order on the magnetic properties of quasiperiodic antiferro-
magnets. Concerning the low-energy modes, magnons propa-
gate with a slightly higher velocity in the disordered tiling as
compared to the perfect quasiperiodic tiling. The density of
states is smoothed. Degenerate states localized on closed
loops disappear with increasing disorder. Eigenmodes tend to
become more delocalized as compared to the perfect tiling.
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These effects have their analogy in phonon models, as well
as in the tight-binding model for electrons in quasiperiodic
tilings. In the magnetic problem our results also indicate that
the effect of disorder is to reduce the strong coherent back-
scattering of the magnon wave functions due to a perfect
quasiperiodic potential and to favor a more diffusive dynam-
ics. Upon increasing phason disorder in the antiferromag-
netic model, the ground state progressively loses its self-
similar features and tends toward a more homogeneous
distribution of staggered moments. The global average of the
staggered magnetization decreases, as does the ground-state
energy, signaling increased quantum spin fluctuations. Both
quantities tend toward a limiting value for this class of dis-
ordered tilings. Such two-dimensional quantum antiferro-
magnets may be experimentally realizable in the near future,
as there has been considerable progress recently with depos-
iting atoms on quasiperiodic surfaces, which serve as tem-
plates. A monolayer of Pb atoms having quasiperiodic sym-
metry has been obtained.!” To study quantum magnetism one
needs to obtain such a surface layer using low-spin atoms. In
addition, one needs the interactions to be predominantly
short range and antiferromagnetic, and this could be realized
via a superexchange mechanism, as in the cuprate layers of
high 7. compounds, in which oxygen atoms mediate the ex-
change between the S :% copper spins.
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